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A SIMPLE QUASI-LINEAR PURSUIT PROBLEM* 

P. B. GUSIATNIKOV and E. S. POLOVINKIN 

A class of differential games is delineated,in which the main pursuit operator Tt* 
/1,2/ is computed analytically. The support function of set T1*(M) is written 

out in explicit form. It is proved that for this class of games the optimal pur- 

suit time coincides with the maximin pursuit time /l-S/ introduced by 
Kelendzheridze. A sufficient condition for the completion of pursuit in 

Kelendzheridze's time is obtained for a linear differential game. The closeness of 

this condition to the necessary condition is proved. The paper borders on the in- 

vestigations in /l-10/. 

1. Let the motion of a vector z in an n-dimensional Euclidean space R"= E be described 

by the vector differential equation 

dz / dt = h (u)z - F (u, u); u E P c RP, v E Q c R’ (1.1) 

(u,v are control parameters, P and Q are compacta in finite-dimensional spaces:F:P X Q+E 
and h:Q-+R’ are continuous mappings) and by the convex closed terminal set M. The state- 

ment of the pursuit problem in game (l-l), the objectives, the information available to the 
players have been defined in /4/. The general theory of pursuit has been constructed in /1,24 

reducing the study of pursuit problem (1.1) to the investigation of the structure of an 

operator T1* :zE-+zE (in contrast to /2/ we use an asterisk instead of a tilde) 

T,(X)= n U jj.~(~)X+Sf”.(~)P(~(s))ds), T,,(X)-Tb,(Ta,_,(..-(T~,(X))...)); Tt*(+n_ T,,(X) 
V*EY TE [cl. e1 0 ! I 

foe(z) = exp (- 5 h (u (~1) ds) ; P (u) = conv F (P, u) 

Here li is the set of all measurable controls v* = {U(S)E Q, SE R’}, 8, is the set of all 

partitions o1 = (C<61<61 + a,< . ..<hl + . . . +S, = t) of interval IO,tl (cf. /2,5/). The 
operator 

(1.2) 

f(z,u)=exp(--k(u)); y(r,~~)=(f(s.~)ds, (-,l*(X)=m(?o,O*m(Qd,_l(...(e*I(X))...)) 
Ii 

was introduced in /1,2/. 

A fundamental theorem was proved in /l/: for any closed .X C E and for t-2 0 Tt* (X) = 

e,* (X). 
In the present paper we present conditions sufficient for the fulfillment of the equal- 

ities 

T,* (M) = T, (M) = 8, (M) (1.3) 

The equalities (1.3) were first proved for the case h(u) z 0, F (U, U) = U-U, P and Q are 
convex compacta in E, in /3/. 

Lemma 1. In order that (1.3) be fulfilled it is necessary and sufficient that 

@,, (8, (M)) = 6%,+,(M), Vsr > 0, sz > 8 (1.4) 

Indeed, (1.4) follows from (1.3) and the semigroup property /2/ of operator rt* Con- 
versely,if (1.4) is fulfilled, then by induction Owe(M) _= 0,(h1) for any 0, E 12,. It remains to 
make use of the fundamental theorem 

7'; (M) c T,(M) c 0,(M) = f@+ (fif) == T,*(nf) 

We observe that the inclusion of the left-hand side of (1.4) into the right always holds /3,6/. 

2. Let XcE,$EE. We set 

W(X;$) = sup (x.9); K (X) = {II, E E : W(X;$) < t- m) 
xEX 
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(W(X;$) is the support function of set 
convex closed sets in E. 

X). Everywhere below we assume that Mand X are 

Lemma 2. For all E> 0, UEQ the set r(e,X,~) is convex and closed, and 

r (E, x, u) = B (E, x, V), B (e, x, 4 = conv G u (f (E, 4x + y cc, v)P (4)) 
The support function We (X,V;$) of set I’(E, X,V) equals 

+ oc, I#,EK* (X)= E\K(X) 

Here 

cp (X, v; -44 = max 10, h LX, v; $)I, h (X, v; 9) = W (P 0% 9) - h b)W (Xi $1 (2.2) 

Proof. By virtue of (1.2) it is enough to verify the inclusion r (E, X, 1,) c B (6, x, V) 
and the convexity of r (e. X, u). Both these follow from the identity 

f (T, V) = 1 - a (u)r(r, 11) (2.3) 

Indeed, for any z = f(r, U)z + ~(t, I+ such that t E ]O,E],.U= X, p s P (~1, we have from (2.3) the 
representation Y (7, J, 1=(1 -a)*+a(f(E, U)Z+y(E, U)P)EB(E, X, v); O'<a = - 

Y (e. L') <' 

To verify the convexity of P(e,X,u) we take further 

z* = f(TI, I#* + y('*. v)p'; T* E IO,&]. 5* E x, P' E P(r) 

Since for any ~l[O,l] we can find (because of the continuity of p(s,z') with respect to s=[o, 
el) T*E[O,EI such that (see (2.3)) 

we have 
PY CT, 4 + (1 - p)y CT*, u) = y (T*. u) , d (z. !J) + (1 - p)f v, u) = I@*. u) 

I* = pz + (1 - B)r' E X; B = ILf(T, u) / f(T*, 4 = IO, I], P* = UP-k (1 - NP' E p (4; 0 = py(r, II)/ y(t*, u) E [O, I] 

and, hence 
CL2 + (1 - p)z' = f(r*. 0)x. + y (T*, v)p* E P (e, x, u) 

The convexity of r(~,X,u) has been proved, and with it the first part of the lemma, fromwhich 
(the closedness of P(E,X,u) follows from that of P(v)) follow formulas (2.1), (2.2). 

Lemma 3. The set e,(X) is convex and closed. The inclusion 2 E8, (X) is fulfill- 
edifand only if 

(2. ~)g~~w"(x,v;~)--e(x;,P), VqEE, wt;" (X;$) = W(X;$) + @ (X,q 4)) (2.4) 

CD (X, E; 4) = 0, 4 E K* (X); @ (X, E; g) = max (0, H (X, E; $)}, 11, E K (X) 

H (X, E; $) = I$: ‘,’ (Et V)h (x, 0; $) 
(2.5) 

Lemma 3 is a trivial corollary of (1.2) and Lemma 2. From (2.4) it follows that the 
support function We (X;$) = W(&(X);+) of set 8, (X) is given /7/ by the formula 

where the lower bound is taken over all finite collections of vectors 

$i E E, i = 1, . ., m (I@* + . . + Qrn = $) 

We observe that, as follows from (2.1) and (2.6) 

3. We denote 

K (X) = K (0, (X)), E > 0 

S+(X) = {II, E K (X) : inf h(X, II;+)> 0); S+ = S+ (M) 
GQ 

Lemma 4. If $EK(X), then 9 I$ s'(X) if and only if 

(2.6) 

(2.7) 

(2.8) 

@((x, E;$)=o, trE>o (3.1) 

The proof follows trivially from the inequality v(~,v)>Ofor E> 0 and VEq. 

Lemma 5. If qe..S (X), then the inequalities 

w=(x;g)= W(X;$), Q, (9,(X], 6 11) = 0 (3.2) 

W(f3,(X);$) E w (X;$), @ (%,V]* 7; $) = 0 

W(8,' (X);lp)= W(X;$), 0 (et* (X], r;*) = 0 

are fulfilled for any t>o,z>o 
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Proof. By virtue of (1.2) 
x cet* (X) Cf$(X) c et(X) (3.3) 

Therefore, equalities (3.2) are obvious for all 9 E K*(X). If now *=X(X), then from (3.3) 
we have W(X;tp)< W'(X;q) which together with (2.6) yields (cf. (3.1)) 

w(X;cp)d~(X;~)=W(X;W)+Q,(X,r;W)=W(X;9).O~S+(X) 

The first equality in (3.2) has been proved. With due regard to (2.2), (2.4), (2.5) we then 

obtain CD@,(X), t; $1 = o(X,t; +), but the latter expression equals zero by Lemma 4. The first 
row of equalities in (3.2) has been proved. From it, in accord with (2.8), follows the in- 
clusion 

S+@,(X)) es+(X) (3.4) 

for any convex closed set XCE and for r>O. Hence by induction 

S+ (eat (x)) E s+ (e, (3.5) m (. tea, (xl) 4) c s+ (x), vat E ch, t a 0 

in connection with which the second row of equalities in (3.2) is fulfilled. Hence, with due 
regard to (3.3), (2.2), (2.5) and Lemma 4 we have 

W(Xi$J) d W(%'(X); $0 < w&$ (X);Ip) = W(X; $)S Q (et* lx), T; ~1) = a (x. r; 0) = 0 

4. Let 

h*=maxh(v); f(s)=exp(-k*s); y(s)=if(r)dr; 
VCEQ 0 

W($)=s$VP (v);*) 

By Q+ = Q+ (M) we denote a subset of Qsuch that for each $tZs+ we can find L'EQ+ satis- 
fying the equality 

mi; h (M,u;+) = h (M, V;$) 
(4.1) 

We assume the fulfillment of the following condition for pursuit problem (1.1). 

Condition A. h(C)= h* for any 5~ Q+. 
Let 9 E SC s Se (M). We fix and denote by 5 = V(q) an arbitrary vector from Q+,given 

by formula (4.1). Let XC E. We set 

W, ($) = W(P (v ($));9); H (Xi+) = W, ($) - h*W(X;$) 

@(X; $) = max (0, H(X;$)l; @(Xi N = Q (%(X);$) 

Lemma 6. If condition A is fulfilled, then 

WE (e,(M); $) = WV%(M); $) + y (e)@ (@a (M); II), vll, E s+, E > 0, 6>0 (4.2) 

Let us first prove that if *ES+ and 6>0, then 

min h (e,(M),v; $) = h(e6 (M): B(q); +) := H (e, (M); 4) (4.3) 
V‘=Q 

Indeed, by Condition A 

~2; IL(~) [w(M:*) - W(Q, (nf); $1) _= h (M, i;(*); 9) + h* fw(~:q+ -- w(e, (hf);q)l = H :e6 (+I); +) 

Equality (4.3) has been-proved. Using this equality and the property of the minimum of a . 
product of nonnegative functions, we obtain (see (3.4)) 

y (c)H (0, (M); Q) = y (e, o($))h (Qa (W. 0 (G); $8 > H (e, (W. 

Y (c)H CR* CM); Q), V$ E s+ (8, CM)) 

E; l#) >:‘ln; y (E, “‘.lll~;h (Q* (fir), G; $) = 
_ 

Consequently, If (Q,(M). F; 11') ~= y (c)H (0, (M); $) and, hence, 

rD(0, (M), e; $) ~~ Y(E)(f) (Q, CM); $), V$ e .s+ (08 (M)) 

Now if 10 ES+\S+(@~(M)), then, by Lemma 4, CD (e,(M),&;*) = 0 i.e., 

(4.4) 

which by virtue of (4.3) implies H(@~(M); $)\i 0, so that (bg(_l/l;$) = 0. Thus we have proved that 
(4.4) is true for all 0 ES+. From this equality and (2.4) follows (4.2). We set @(M; 9) =O, 
$ d S+(M) . 

5. Lemma 7. Let E >, 0, $ E K (M). Then for any h= 0 we can find a collection (2.7) 
such that m 
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(5.2) 

Proof. If We(M;$)= W(M; $)+u(e@(M;$), then inequality (5.1) is fulfilled for a col- 

lection (2.7) in which I!L = l,Q1 -$. Let us verify (5.2). We estimate H =H(e,(M): Q). We 
have 

(5.3) 

Hence, a,(~;$)=f(~)a(~;$) and (5.2) is proved. Consider the case 

W'(M;$) < lV(M;*) + Y (C)(P (M:r) (5.4) 

By virtue of (3.2), (4.4) we have from this that D(M;$)>O. so that 

@(M;*) :_ H (M; $) (5.5) 

From (5.4), the definition of the lower bound (2.6), and formula (4.2) follows the existence 

of a collection (2.7) such that (5.1) and the inequality 

5 [W(K %&-t Y(F)(PM l&)l<w(M; *) ;- Y(F)'P(Mi $) (5.6) 
i=1 

I,, 
are fulfilled. Because of the convexity of the support function IV(M,$)< x Ir'(M,gi), , from 

(5.6) we have i=l 

(5.7) 

Once again we estimate H. 

Case 1. h* >o. From (5.3)- (5.5) follows 

@,(M;$)> H = W's ($)- ~*W(M;$)> W,($) - A*W(M;Q)- h*y(e)Q((M;$_) -=f(~)a,(M;$) 

which together with (5.7) yields (5.2). 

Case 2. h* = - Ih*l<O. To estimate Hwe use (5.1), the convexity of w(M;+) and (5.7) 

m m 
I?.* /IV (M; 9’) + I?.’ ( y (e) 2 @((nf; qi) .- A 1 I* ( = CP (M; $)- h*y (F) 2 0 (M; V',) - A I A* 1 > I (F) 2 0 (Mz $- A 1 J.* 1 

Hence follows (5.2). i=l i=l i-1 

6. Theorem 1. If Condition A is fulfilled for problem (l.l), then (1.3) is fulfilled 

for any E>O 

Proof. By virtue of Lemmas 1 and 3 it suffices (see Section 1) to verify the inequality 

WeI (0,, (M);$) > Wp*+el(M;$); $ E E, e, ,- 0, E* > 0 (6.1) 

If $ E K* (M)or +E K(M)\ Sf, then (6.1) follows from (2.8) or (3.2), respectively. Now 

let $ E S+, A > 0. In accord with Lemma 7 a collection (2.7) exists such that inequalities 

(5.1) and (5.2) are fulfilled for E = e?, combining which we obtain 

ij+ (@,, (&I); 'II')= \r-"(nf; $) + y (FI)&: (:lf; I,‘) > ,$ [Iv (~lf;ll;,) + 
(6.2) 

t--I 

Here we have used relations (4.2), (2.6) and the identity f (T, U)J~ (s, c.) i- y (r, U) = y (r f s. 11). 

Since the quantity A,> 0 in (6.2) is arbitrary, inequality (6.1) has been proved and with 

it the theorem. 

7. By Q" _ Q" (M) we denote a subset of Q such that for each $ E s+ we can find 

~?EQ++ for which W(P (2');$) :-: w(g). 

Condition B. OEM (0 is the null vector in E); h(r)_= h* for any L'EQ++. 

Lemma 8. If Condition B is fulfilled for game (l.l), then Condition A is fulfilled. 

In this case w* ($) = w&J)'. 

8. Let a pursuit problem be described by the equation /4/ 

&I dt -= Cz - F (u. v) (8.1) 

where C is a constant nth-order square matrix, F (U, v), P. Q and Msatisfy the requirements 
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in Sect.1 for problem (1.1). 

Theorem 2. Equalities (1.3) are fulfilled for problem (8.1) if matrix c - h*I, h' 
is a real constant, I is the nth-order unit matrix, function F(u,v) is continuous on P x Q, P 
and Q are compacts in finite-dimensional spaces, Mis a convex closed set. 

Proof. If the hypotheses of Theorem 2 are satisfied, then problem (8.1) turns into 
problem (1.1) in which h(u)= h*, VEQ, in connection with which Condition A is fulfilled. 
It remains to apply Theorem 1. 

9. Theorem 3. If in problem (8.1) each nonzero vector $'E K(itl) is an eigenvector 
of matrix C* (the operator adjoint to C), the equalities (1.3) are fulfilled. 

Proof. Since K(M) is a convex cone /7/, a single real h* exists such that C*$ = A*$ 
for all %E Kg, where K. is a subspace, being the linear hull of K(M). If the dimension 
n, _ dimKe = n, then matrix &*, and with it also C, has the form h*I, where I is the 

nth-order unit matrix. It remains to make use of Theorem 2. Now let n* <n. ByN,ue denote 
the orthogonal complement to K, in E and by n we denote the operator of orthogonal projection 
onto K,. Then the following lemma is valid. 

Lenma 9. Set Mean be represented as 

,W = N, -+ M,; M, = nM (Q-1) 

Proof. At first we verify the set mo+N, is contained in Mfor any ea, E hf. To the 
contrary suppose that we can find !zo EX@ such that %k+%eMM; then by the separability 
theorem /7/ there exists 0 E K(M) such that (+(m,+no))>(+ni) for every m EM. Taking m =m, 
and recalling that ($.a,,)=O, we arrive at a contradiction. To prove (9.1) it remains to make 
use of the chain of inclusions 

N, + M. = N, + M CM CN, + IM* 

We complete the theorem's proof. We set z* = nz; z* = 2: - nz; F,(u, v) = n F (u. u); C, = XC. 
By virtue of (9.11, ZfzM if and only if 2% EM,. Further, since subspace K. is invariant 
relative to operator C*, we have that N,is invariant relative to C, so that C,Z*E 0. In 
addition, for any $EK,, we have 

($.IC*Z* - x*z*l) = ($.Cz*) - li* ($.I*) ==-'(cy.2,) - a,* (9. 3,) = 0 
Consequently, C*z* = h*z*. Therefore, applying operator n to (8.1), we obtain 

dz, / dt = n (dzi dt) = C, (z, + 9) - F* (u, V) = h+z, - F, (16, v) (9.2) 

Thus, under the hypotheses of Theorem 3 game (8.1) is equivalent to game (9.2) with terminal 
set M,. Since game (9.2) already satisfies the hypotheses of Theorem 2, Theorem 3 is proved. 

Let us now prove a theorem that in some sense is the converse to Theorem 3. 

Theorem 4. Let a matrix C and a convex closed terminal body M/8/ be such that we can 
find a vector moE K(M), I’po 1 = 1, that is not an eigenvector of operator C*. Then for any 
sufficiently small 6,:~ 0 there exist the spheres P = a + (p + u)S, Q = pS (p > 0, G > 0; S 
is the closed unit sphere in E with center at the origin; o is a constant vector) and the 
function F(u,u) = u - u such that in problem (8.11 the sets Tc(M) and Te* (M) do not co- 
incide for some E E(O,O,) (here, as in Theorem 3, we use the general definition /2/ of 
operators T, and T,*). 

The theorem is proved in several stages. By v($)andw($)we denote (and use subsequently) 
the vectors occurring in the equalities. 

uWEQ, ($.y&%= @‘(Q;44; ~‘&)E% (PP-~W) = wW;$f 
Lemma 10. Let Q and 1;2 be convex compact bodies not containing segments on the boundary, 

where only one support hyperplane passes through each point of the boundary of f2. Then for 
any E,,> 0 there exists S,> 0 such that the inclusion v f w(Q)+ ?~ocpE P = Q+ D is fulfilled 
for all cq,$~S, 19 1 = 1, and for all UG Q satisfying the inequality I v (44 - v I > % . 

Proof. By the lemma's hypotheses the vectors ~(9) and o($) are unique. The subsequent 
argument is by contradiction. Let eo >0 exists such that for any,positive integer n we can 
find _I?,,.[$,,I=~,c~ES: t?n~Q,)~(W-~~/&%, such that v,+o(tP,)+,rp,tieP, i-e., the inequality 

(9.3) 

is fulfilled for some y)"EB,I$"I=l. Passing, if necessary, to a subsequence, we can take 
it that 

$n -$cpo, 11" -V. %I -t 9po* I%1=lVl=i>lcpoI~ +I-00 =Q,) 
11 -cc 

Since (because of the absence of segments on the boundary) the functions v(q) and e($)are con- 
tinuous /7/. 
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v (Ipl) + D (rp,), ” W”) - u WL o(~,)-o(qL3)l ~w”)--o~“)~ n-m 

Passing to the limit, from (9.3) we obtain 

($0. [u ($0) - %?I) -I- 6P.l~ WY -- 0 (WI) < 0 
(9.4) 

I ” (Id - % I > 4 (9.5) 

Noting that each of the two terms in the left-hand side of (9.4) are nonnegative, we 

conclude that v0 = v($~);o($+')~ o(+J. Since only one support hyperplane to G passes through 

the point o&), we have that I@~=$", so that u, -~(ll;~), but this contradicts (9.5). 

10. Everywhere in this section we assume that in game (8.1) Mis a convex closed body, 

F(u,v) = U-V, p = Q + 8, where Q and Q satisfy the hypotheses of Lemma 10. For any zfl E E 
we denote by t(z") the earliest instant t I;8 for which the inclusion Z,E T,* (M) is fulfil- 

led. It is well known /9/ that in this case the instant t(z,)can be defined also as the 

earliest instant t 20 for which the inclusion. 

@(t)zoEM + ~cD(r)Rdr; cD((t)=exp(IC) (10.1) 
i 

is fulfilled. Using the notation of Lemma 10, we assume 

V (r,Ip) = v (w (r, $))Y 0 (r, $) = 0 (w (r, $), 3 w @,I$) = a),* (r)$ /I CD* (r)$ 1, a),+ (r) = exp (rC*) 

Then vectors m, E M and $,, E E, j$la 1 = 1 exist such that 

(10.2) 

CL,(t) z&M + J al (r) cur, tfz IO, t (zo)) (10.3) 

0 

Lemma 11. For the fulfillment of the equality T,(M) = T,* (M), Ed IO, t(z,)l it is 
necessary that the condition (int is the symbol for the interior of a set) 

CD (I) z0 + S d, (t - r) 1) (t (zo) -r, qo) dr@ int [M + S@(r) Pdr] 
0 0 

be fulfilled for any t E IO, t (z,,)). 

Proof (by contradiction). Let T ~[O,t(z~)) exist such that 

@(r);~ry(D(~- r)o (t (za)- r, vO) dr E itit 
0 Ii 1 

M + O(r) P dr 
0 

This signifies that we Can find a>0 such that for each measurable control 

satisfying the inequality 

jlo(;))- r, &- zj (i-)1 dr < q. 
0 

we can find a measurable control U (t) E P, t E ((I, T], such that 

We assume 

(10.4) 

(10.5) 

(t) E 0, t E IO. Tl, 

(10.6) 

(10.7) 

Let a number 6,>0 correspond to Ed by virtue of Lemma 10. Since .11 is a body, there exist 

a vector mr and a number pa>0 such that /8/ 

I ‘P* I # 0; 1 CD-’ (r) cF* I f 1, 0 d 7. < f (2”) . IU* + po.S CM, ma rno - koSo'P* (10.8) 

We set B, = IUL* I + 1 +Q* it?,; B, = IICIj--I- 1; //C/j is the norm of matrix C. We select a number so E 

(TV t (4) such that 

B, I~.v (B2 It (4 - 4) - 11 < PO (10.9) 

We now consider an arbitrary measurable control u * = (v(t) E Q, t E [O,S,,]) not satisfying 

(10.6). This signifies that a measurable set V f"*) c lo,'71 exists such that KIPS V(L,*)= k,,\ u(t (z,,- 

r, Il") - 0 (r! I,, %, T.E v (D*). Having defined 0 (7) = v (t (2") - r, $a), r E (,%? t (%)I, we assume 

(the possibility for such a choice of u(r)= P follows from Lemma 10 and (10.8)). Then for 

such a pair of controls r‘(r) and u(r) (cf. (10.2)) 
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f (h) 

2 (ad) = Q, (t (30)) 20 - r @(t(zO)-r) [u (r)-o(r)]dr-=m* 

‘0 

553 

(10.10) 

Having denoted l(r) =z(r)--m,, we have 

1 (Z.4 1(ZO) 
Il(r)I=Il(t(+))- s [Cl(e)-o(t(~g)-e,rPo)]deI$ B, \ (I~(‘%I+k)dh r=[%.t(%)] 

So that by Gronwall's lemma'and formula (10.9) 
; 

I 1 w I G 4 UT (B* It h?) - %I) - 11 < IJO 
By virtue of (10.8) this signifies that z (So) E M. Hence from (10.7) it follows that z0 E T,(M) 
(see /2/ for the definition of T,); however, by virtue of (10.31, ZOeT,+(M). A contradic- 
tion. The lemma has been proved. 

11. We complete the proof of Theorem 4. We consider the analytic functions 

h(r)L+= 1-g++...; Y(r)=-&= I+++$+... 

whose radii of convergence are+ooand 2n, respectively. If A is an arbitrary nth-order 
matrix, II A11<2n, , then the matrix-valued functions A(A)’ and Y(A) exist and satisfy the 
relations 

A(A). Y (A)=I; th(tA) = fexp(-rA)dr, t>0 
i 

ih connection with which the inverse operator 

[ { exp (- rA) dr]-’ =+Y(tA)d(t,A) (11.1) 
0 

exists for 8< tll-4 Ii < 2s Let m,, be a fixed point of set M such that (m,.cp,) = W (M; cp& 
Since Mis a body, a vector v+, Iq’+ 1 = 1, and a number po>O exist such that 

m, - Lq* E int M, h E (0, po) (11.2) 

The vector cpO is not an eiyenvector of operator D = C*. Therefore, the number a= IDcp,I’- 
('~o.Dm,)* > 0. 

Now let 8i > 0 (i = 1,2,&h) be arbitrary numbers satisfying the relations 

e,~(O,min(l,&]), e,>o, es>o, ea+es=e,, e1Eiote41 (11.3) 

We set G (2, y) = XA (sC).R (y, C) and consider the expressions 

g (e,, ea, 8,) = (Q . G (e,. ed[x (o,e,) - 7 0 (rj w(e2 + r,rpo) dr]) 

x(~,Y)=S~(')W(r,8.)dr, E h w = ho . c: (e,, 0%) CP*) 

x (4, e,, L = ~WIX (e, - h, 0,) - G (e,, wt h w 
The Taylor expansions of these expressions in powers of 8,,8,,8, leadtothe following estimates 

(N denotes a constant depending only on matrix Cand not depending on ei (i = I, . . ., 4)): 

g (e,, es, e,) > e1e3 (+ e1 - Nez) ; 5 (e,, e,) < Ne,e;l, x (e,, es, e,)> e1 (&es - e,)(e,- 2e1)- Neda 1 e2-el I) (11.4) 

Now let p>O,q>O,v>Q be arbitrary real numbers satisfying together with ei(i = i,.. 
., 4) the inequalities 

v =+KM,~, 8,+$-Y -+Ol<+<& (11.5) 

From (11.4), (11.5) we have the estimate 

'1 (P, 9, V, et3 0,; 4 > 0, r E (0, hi (11.6) 

for the expression q (p,q,v,e,,e,; r)=f (&?g (r,e2,e3) + qx(r,e~,e,)--vS(r,f)Z)). 
Let us now consider a game (8.1) in which 

F(u.,u)=u--u, P=QfR, Q=pS, R=a+oS (11.7) 

a=Cm*+ a*. m*=m0+~X(o,ed, a,=R(e0--z,C) x{-v~~+p[~(O,~)-~Q)(r)?o(e,-~+r,r~~)dr]--~(r~e~)} 
0 

and the constants p> 0, a>O, e,> 22>0, v>O satisfy the inequalities 
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(11.8) 

We take the point z0 = n* + 8,A (&$)a, and we verify that the equality t(z,,) = 8, is fulfilled 
for this point and that at instant z the inclusion (10.5) is fulfilled with &, = 'p,, , which 
by Lemma 11 completes the proof of Theorem 4. It is easily verified that (cf. (10.2)) 

CD (eo) G, = m. t i 4 (r) o (r, cpd dr; (1) (r, cpo) = a + uw (r, cpo) 
0 

Let us prove (10.3) for all tE IO,O,). For this it is enough to verify the inequality 

A(t)+,. {@(t)zo-mo- j Q (r) o (r, To) dr}) > 0, VE IO, eoY 
0 

Simplifying the expression for A(t), we obtain, using (11.7), (11.8), (11.5), (11.3), (11.6), 
&-I 

A(t)=(cpo. j Q(-r)a,dr+a~(f,8~))=(&-t) x ~(p~,a,~,a~-~~~;e~-t);O 
0 

The equality t(zO) = 8, has been proved. 
To verify (10.5) with $o=% we make use of (11.7), (ll.l), (11.2) 

f Q, (r)\a + (p .f (J) w (r, TO)] dre int [M + 5 m(r) Z’dr] 
0 0 

The theorem has been proved. 
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